Towards Roll-to-Roll Deposition of High Quality Moisture Barrier Films on Polymers by Atmospheric Pressure Plasma Assisted Process

Sergey A. Starostin,* Mariadriana Creatore, Jan B. Bouwstra, Mauritius C. M. van de Sanden, Hindrik W. de Vries

An atmospheric pressure dielectric barrier discharge (DBD) was applied for the deposition of silica-like moisture barrier films on polyethylene 2,6 naphthalate foil. The diffuse plasma was sustained between two cylindrical drum electrodes in N\textsubscript{2}/O\textsubscript{2}/Ar gas flow with the addition of tetraethyl orthosilicate. The chemical composition, morphology and water vapour transmission rate of the moisture permeation barrier layers were studied as a function of the dynamic deposition rate and substrate temperature. It was demonstrated that dense silica-like layers of 100 nm thick with a good permeation barrier of $\approx 1.8 \times 10^{-3}$ g⋅m-2⋅day (at 40 °C, 90% RH), corresponding to three orders of magnitude barrier improvement with respect to the pristine polymer, can be deposited in an atmospheric pressure process.

1. Introduction

Atmospheric pressure plasma enhanced chemical vapour deposition (AP-PECVD) of thin functional films has the potential to circumvent the limitations imposed by conventional low pressure deposition methods. These limitations are primarily related to the high costs and large footprint of vacuum equipment as well as the necessity to use batch processing or complex transfer chambers. Yet, the main question is whether atmospheric pressure deposition can lead to similar or even better thin film performance when compared to the well-established low pressure PECVD. At the same time from a scientific point of view there is a need to fill the existing knowledge gap between film properties and deposition mechanisms in atmospheric pressure plasma.

Deposition of thin transparent gas diffusion barrier films can be considered as one of the most challenging applications for PECVD technology, requiring low costs, large area compatibility and excellent layers in terms of uniformity, density and low defect level. The application field of these layers is very broad ranging from food, beverage and drug/medical-packaging towards more demanding applications, such as flexible solar cells or OLED displays[1–3]. For flexible electronic devices the main targets are to achieve prolonged life time stability (in order of several years) by limiting the water vapour transmission rate (WVTR) and oxygen transmission rate (OTR) through the encapsulating envelope.

While there is a large number of publications on low pressure deposited thin barrier films and their
characterization much less is known in the field of gas diffusion barriers developed under atmospheric pressure.[6–14] The AP-PECVD processed oxygen barriers were studied in,[15–17] however, the performance of those films was not sufficiently optimized to be competitive with low pressure technology. In a prior article we have reported that by means of AP-PECVD it is possible to produce a thin single layer silica-like gas diffusion barrier on PEN foil with a WVTR $< 5 \times 10^{-8}$ g·m$^{-2}$·day$^{-1}$ and OTR $< 5 \times 10^{-3}$ cm3·m$^{-2}$·day$^{-1}$·bar$^{-1}$, nevertheless, the dependency of barrier film properties on the deposition conditions was not addressed and discussed there.[18]

At atmospheric pressure the development of a plasma source suitable for the deposition of uniform high quality films compatible with processing at large area with a high throughput is a serious challenge from the scientific and technological point of view.

This research adopts the high current diffuse dielectric barrier discharge (DBD), which can be attributed to the glow-like discharge type.[19] The classical DBD is a common source of non-thermal plasma at atmospheric pressure.[20] This type of DBD (also known as corona discharge in industry) produces a filamentary plasma, having a strong spatial non-uniformity in power dissipation and plasma–chemical reaction rates.[20,21] The uncommon diffuse modes of the DBD identified as low current atmospheric pressure Townsend-like discharge (APTD) and high current atmospheric pressure glow-like discharge (APGD) were recently recognized as promising tools for plasma assisted deposition of high quality films.[22–24] The high current APGD mode is typically observed for a narrow parametric window of dissipated power densities, discharge frequencies and requiring gas mixtures strongly diluted by helium or argon.[23] However, we have already shown that smooth inorganic silica-like as well as organic carbon-rich films can be deposited in a diffuse glow-like discharge operating in cost-efficient nitrogen-based gas mixtures, or, even, using air as the process gas.[25]

A number of process parameters has a significant effect on the general properties of the PECVD synthesized barrier film such as chemical composition, morphology, film density and adhesion to the substrate. Some of these correlations were already discussed in selected publications from our group.[26–28] More general plasma chemical pathways of thin film deposition from organosilicon precursors in atmospheric pressure DBDs were investigated in.[29–31]

From the application point of view it is necessary to know how and why the barrier film quality depends on the reactor throughput. In the case of thin film deposition on a moving web the throughput is expressed by the dynamic deposition rate (DDR) value, defined as the product of film thickness and web transport speed. Another important characteristic for any kind of plasma–chemical process is the specific energy delivered per precursor molecule, or related to this, the Yasuda composite power parameter. This parameter is defined as the ratio between dissipated power and the product of monomer flow and monomer molecular weight.[32] The influence of Yasuda parameter on atmospheric pressure plasma-polymerization of HMDSO was recently studied.[33] In the case of fixed input power and complete precursor depletion in the plasma the variation in monomer flow will result in scaling of both DDR value and energy spent per monomer molecule. In,[25,26] we already showed that the variation of specific energy dissipated in the discharge has a strong effect on both the refractive index and OTR value of the silica-like films. For the specific case study here under analysis, it is found that the rate of surface reactions and structure of the deposited film are strongly influenced by the substrate temperature.[37,35,36]

The novelty of the present work is the investigation of the atmospheric pressure barrier deposition process in a system closely compatible to industrial production demands. To enable such industrial roll-to-roll processing a cylindrical drum electrode configuration was implemented, while previous investigations were carried out for plane parallel electrodes.[17,25–26] The influence of two key parameters, namely dynamic deposition rate and substrate temperature was investigated comprehensively in relation to moisture barrier performance. The emphasis was put on highlighting and discussing the specific energy value required for the deposition of good performing barrier films at atmospheric pressure.

2. Experimental Section

The silica-like films were synthesized in a roll-to-roll PECVD reactor open to ambient air. The schematic view picture of the system is presented in Figure 1. The DBD was ignited between two cylindrical rotary drum electrodes with a radius of 120 mm, covered by optical grade thermally stabilized Polyethylene-2,6-naphthalate (PEN) foil 100 μm thick and 18 cm width (TEONEX Q65FA produced by Dupont Teijin Films). To enable precise temperature control the drum electrodes were equipped with a spiral tube affixed to the inner surface of the metal electrode shell. The heated liquid (oil) was pumped through the spiral tube to control the temperature of the drum electrode surface within $\pm 1^\circ$C of the set value of the oil heater. The foil served two purposes, first, as the dielectric layer in the DBD arrangement and second, as the substrate for deposition. Both the top and bottom electrodes were equipped with independent roll-to-roll foil transport and tension control systems. The foil transport speed was varied from 50 mm/min to 300 mm/min. The effective discharge width was 15 cm and the smallest gaseous gap was 0.5 mm. For the investigated experimental conditions the characteristic discharge expansion length along the gas flow was typically 2 cm. However, the exact dimension of plasma expansion depends on the applied power, gas mixture and gas flow rate. The plasma was created using a high frequency
generator from Seren Industrial Power Systems (L3001). The metal drum electrodes were connected to an external AC circuit via carbon brush type electrical contacts. The operational frequency was tuned in the interval of 180–200 kHz to optimize forward power matching. The reactor was operating in the pulsed mode with a high voltage HV pulse duration of 800 μs and 90% duty cycle. The voltage amplitude between the electrodes was 2–3 kV. The reflected power was typically in the range 2–5% of the forward signal and was accounted for in the presented data. The power dissipated in the discharge was 575 W corresponding to approximately 19.2 W/cm² specific power density. The discharge current and voltage were measured by Pearson current monitor 4100 and Tektronix P6015A probe respectively. The I–V waveforms of the discharge are shown in Figure 2. It can be estimated that the peak current density averaged over treated surface area can reach about 170 mA/cm². This value is considerably higher than the typical Townsend-like discharge current densities which usually do not exceed 0.5–1.0 mA·cm⁻².[23] The instantaneous current densities can be even higher, because the discharge will form localized propagating ionization waves at nanosecond time scale.[19]

Tetraethyloorthosilicate (TEOS), Si(OC₂H₅)₄, and oxygen were used as reactive gases, diluted in nitrogen carrier gas. For the present experimental arrangement approximately 70% of the supplied gas flow was passing the active plasma zone contributing to the deposition process. Part of the gas flow was lost via the narrow gap (≈100 μm) between gas injector and electrodes (see Figure 1). Due to its high vapour pressure at room temperature, the TEOS (Sigma–Aldrich, ≥99.0%) was injected via a controlled evaporation mixer (CEM) unit (Bronkhorst) where monomer vapours were mixed with 1 slm argon flow. The gas flow of nitrogen was 20 slm. The precursor and oxygen admixtures were simultaneously adjusted with fixed ratio of 4.5 10⁻³ in the range of 1.8·10⁻³–10.8·10⁻³ slm and 0.4–2.4 slm respectively to govern the dynamic deposition rate in the interval of 10–60 nm·m·min⁻¹. All the gases were mixed in the buffer chamber before they were introduced into the plasma. For the studied conditions the reactor was operating in the complete precursor depletion mode. Precursor depletion was confirmed by the infrared absorption analysis of the exhaust gas in the long-path cell. It should be noted that the minor presence of argon in the gas mixture was not critical for the discharge properties or thin film synthesis, but based on the construction of the precursor injection system.

The temperature of the substrate during the deposition process was measured by an infrared camera, FLIR A320, from the effluent
side of the PECVD reactor indicated as viewpoint A in Figure 1. The infrared measurements were verified with a fibre optic thermal probe from OPTOcon FOTEMP in the absence of plasma for set values of electrode temperatures up to 100 °C.

The thickness of the films was determined using a variable angle spectroscopic ellipsometer (M-2000D, J.A. Woollam Inc.) in the wavelength range of 400–1 000 nm. The employed optical model was composed out of three sub-layers: the polymer substrate, silica-like film and the surface roughness layer. The polymer and silica layers were modelled using the Cauchy dispersion function. The Bruggeman effective medium approximation was applied for the surface roughness layer. The optical model did not take into account the substrate anisotropy as previously done.\\(^\text{[34]}\) X-ray photoelectron spectroscopy (XPS) was performed using Mg $K\alpha$, X-ray source with a photon energy of 1253.6 eV (PHI 5500). The average force microscopy (AFM) measurements were carried out in the peak force tapping mode using Si tips with a radius of 6–8 nm (Bruker Dimension Icon). The captured AFM images were then processed using open source Gwydion software for the surface profile analysis.\\(^\text{[37]}\) The RMS roughness of the untreated PEN substrate foil was 1.65 ± 0.03 nm. During the deposition process plasma uniformity was controlled by the Dalsa EC-11–05H40 sensitive array camera with 13 μs frame integration time. Visual and sensitive array camera observations of the discharge confirm the diffuse character and good uniformity of the plasma across the width of treated polymeric foil.\\(^\text{[26]}\)

Synthesized coatings were analysed by attenuated total reflection Fourier-transform infrared absorption spectrometry (ATR-FTIR) using a PerkinElmer Frontier instrument equipped with a single reflection Ge crystal ATR accessory. It should be noted that PEN substrate has strong absorption bands in the spectral region of 1 000–1 200 cm$^{-1}$, overlapping with the main absorption peaks of silica-like films. Therefore, for the purpose of absorption spectra analysis, the samples for ATR-FTIR were deposited on polyethylene terephthalate (PET) foil pre-coated with 1 μm thick polyvinylidene chloride (PVDC) layer. This simplifies the subtraction of the substrate absorption spectra because the PVDC layer prevents penetration of the evanescent wave into the underlying PET substrate and the PVDC layer has no strong absorption peaks in the regions of interest.

WVTR was measured using Technofox Deltaperm instrument (ASTM D 1434–82 (2003), sensitivity of 2 \times 10$^{-4}$ g · m$^{-2}$ · day$^{-1}$) for the conditions of 40 °C, 90% RH unless stated otherwise. The area of tested samples was 50 cm2. To reach stable transmission rate 50–100 hrs measurement time was required. During the measurement the WVTR value was recorded each minute. The average of the last 100 experimental points was presented as characteristic WVTR with the standard deviation being below 1%. The WVTR value of the pristine PEN substrate is 1.7 g · m$^{-2}$ · day$^{-1}$.

The adhesion of deposited layers to the polymeric substrate was evaluated with a cross-cut tape adhesion test ISO 2409. For all films described in this publication no evidence of delamination was found after tape removal.

3. Results and Discussion

The variation of deposition rate provided by the change in precursor mass flow has a profound effect on the film morphology and chemical composition, as well as permeation properties. At the same time, for a fixed value of the discharge power in a precursor deficient regime, a variation in monomer flow defines the characteristic energy spent per precursor molecule. The dynamic deposition rate is largely determined by the specific reactor configuration such as active deposition length and the method of precursor injection, while the energy delivered per precursor molecule is a universal parameter.

The dependency of the WVTR value of the silica films on the dynamic deposition rate (DDR) is shown in Figure 3. The insert graph in Figure 3 presents how the WVTR is changing with the specific energy spent per deposited precursor molecule. The specific energy values were estimated from the dissipated power and the deposition rate assuming nearly stoichiometric amorphous silicon oxide with the density of 2.2 g/cm3. The variation of DDR was provided by the variation in TEOS flow (1.8 · 10$^{-3}$–10.8 · 10$^{-3}$ slm), while the web speed was scaled (50–300 mm · min$^{-1}$) proportionally to the average deposition rate in order to deposit films at constant thickness of 100 nm. For the dynamic deposition rate calculation it should be taken into account that films are simultaneously synthesized on two substrate webs (see Figure 1). The oxygen flow rate (0.4–2.4 slm) was scaled with the TEOS flow rate, to keep a constant ratio between precursor and oxygen concentration. The substrate temperature measured with the infrared camera was 125 °C. For the DDR values of 10 nm · m · min$^{-1}$ and 60 nm · m · min$^{-1}$ the estimated energy spent per TEOS molecule is 6.5 keV/molecule and 1.1 keV/molecule, respectively. Figure 3 shows that an increase in the dynamic deposition rate corresponding to a decrease in the specific energy spent per TEOS molecule results in a steep rise in WVTR.

The deposition rate values averaged over the process length were 250 nm/min and 1500 nm/min for the DDR

![WVTR PEN substrate](Figure 3. Dependency of WVTR value for 100 nm thick silica film on the dynamic deposition rate. The insert graph shows how WVTR is changing with specific energy delivered per TEOS molecule.)
values of 10 nm · m⁻¹ and 60 nm · m⁻¹, respectively. Note that the maximum value of local deposition rate can be considerably higher due to the non-uniformity of the deposition rate profile along the gas flow induced by the precursor depletion. For assessing the value of DDR and the system throughput, one should take into account that the plasma-active zone in the present experimental setup (∼2 cm) is relatively short and therefore the local deposition rate values for PECVD of dense inorganic films are rather high.

The film composition derived from the XPS analysis for dynamic deposition rate values of 10 and 60 nm · m⁻¹ is reported in Table 1. One can see that the film remains essentially inorganic for both extreme cases with the residual carbon content below the detection limit.

The variation in film composition and structure as a function of the dynamic deposition rate can be complemented by means of ATR-FTIR spectroscopy. For a comparative evaluation of the silica-like film quality several absorption bands are of special interest. The peak related to Si—OH stretch vibrations in silanol is located at 930 cm⁻¹ and vibrations of —O—H groups in the 2 800–3 600 cm⁻¹ region. The major absorption feature in the region of 1 040–1 250 cm⁻¹ is corresponding to the asymmetric stretch vibrations of the Si—O—Si unit. This vibration consists of two overlapping modes: in-phase (AS1) and out of phase (AS2). In turn, each mode splits into transverse optical (TO) and longitudinal optical (LO) pairs.

In Figure 4a we show how the infrared absorption spectra change in the region 750–1 300 cm⁻¹ with variation in dynamic deposition rate. This graph corresponds to the WVTR dependency on DDR for 575 W dissipated power as shown in Figure 3. Looking to the peak at 930 cm⁻¹ which is related to the Si—OH bonds, it can be concluded that more silanol is incorporated into the film as the DDR increases. At the same time the main absorption feature at 1 060 cm⁻¹ which can be attributed to the in-phase asymmetric stretch of Si—O—Si (AS1) is sharpening and shifting towards higher wavenumbers. The shift is monotonic versus increase in DDR value, although for reasons of clarity in Figure 4a we show only the spectra corresponding to DDR of 10 nm · m⁻¹ and 60 nm · m⁻¹. Generally it is assumed that both, a shift of the AS1 peak towards a value of 1 078 cm⁻¹ (characteristic to thermal oxide) and a decrease in bandwidth are indicating silica-like film densification. The observed opposite behaviour is rather unexpected but already reported in the literature. In a similar shift of the AS1 peak to higher wavenumbers was well correlated with an increase in OTR for silica films. It was discussed in that this behaviour can be related to the modification of Si—O bond environment, when the presence of Si—OH groups is shifting the oscillation of Si—O in AS1 peak to higher frequency. Comparable behaviour was observed by Pliskin for the silica film produced by the electron beam evaporation after exposure to a humid environment. In the last case the peak at 930 cm⁻¹ attributed to the Si—O stretching vibration of strongly hydrogen bonded silanol Si—OH, was correlated with a pronounced decrease in bandwidth and blue shift of the AS1 feature. This observation was explained on the basis of silanol formation leading to strain relief in Si—O bonds as well as to less variability in the bond force constants. Therefore the shift to higher frequencies accompanied with a decrease in bandwidth can take place without densification if the density of silanol groups increases. On the other hand, it can be expected that the shift towards lower frequencies upon —OH groups reduction, observed in the present experiments, is non-monotonic and can be followed by the opposite blue shift upon further densification of the film.

The broad absorption feature in the region of 2 800–3 700 cm⁻¹ is attributed to the —O—H vibration. It can be considered as a superposition of 3 peaks with: 1) peak centered at 3 350 cm⁻¹ attributed to OH in adsorbed water on the layer 2) peak centered at 3 515 cm⁻¹ attributed to associated silanol groups and 3) peak centered at 3 640 cm⁻¹ attributed to isolated silanol groups. Figures 4b demonstrates the change in spectral feature at 2 800–3 700 cm⁻¹ as a function of dynamic deposition rate. One can see that an increase in the deposition rate leads to an increase in silanol density both in associated and isolated states, pointing out again to a decrease mass density in the deposited layers. This trend supports the decrease in barrier properties as shown in Figure 3.

The change in surface morphology with increase in dynamic deposition rate from 10 nm · m⁻¹ to 60 nm · m⁻¹ is shown in Figure 5a, b which present the 2 x 2 μm² AFM micrographs for 100 nm thick films. The WVTR performance for these layers was shown in Figure 3. In we already studied the surface dynamics of the silica-like films grown by AP-PECVD process. Compared to our previous investigation the micrographs presented here are corresponding to the films deposited in the discharge between cylindrical drum electrodes at substantially higher dissipated power density.

<table>
<thead>
<tr>
<th>Substrate Temperature [°C]</th>
<th>Dynamic Deposition Rate [nm m⁻¹]</th>
<th>Si [at. %]</th>
<th>O [at. %]</th>
<th>C [at. %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>20</td>
<td>33.3</td>
<td>66.4</td>
<td>0.2</td>
</tr>
<tr>
<td>125</td>
<td>10</td>
<td>33.5</td>
<td>65.8</td>
<td>0.3</td>
</tr>
<tr>
<td>125</td>
<td>60</td>
<td>30.7</td>
<td>69.1</td>
<td>0.1</td>
</tr>
<tr>
<td>140</td>
<td>20</td>
<td>32.0</td>
<td>67.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Although the presence of surface features can be seen on both AFM scans in Figure 5a,b, the overall RMS roughness remains low \((R_q = 1.7 \text{ nm}) \) and comparable with the bare polymer \((1.65 \pm 0.03 \text{ nm}) \). Nevertheless the number of small features is clearly growing as the deposition rate increases. This is a somewhat different behaviour compared to the morphologies that we observed earlier in\[^{29}\] where carbon containing films were grown from hexamethyldisiloxane (HMDSO) precursor in the DBD process between plane-parallel electrodes, and a reduction of surface roughness was obtained with the deposition rate.

Figure 3 is indicating the specific energy in the order of a few keV, which needs to be delivered per precursor molecule in the gas discharge for synthesis of the good performing barrier films. At the same time the energy required for the direct scission of the \(\text{C} - \text{O} \) or \(\text{Si} - \text{O} \) bonds in TEOS monomer which is an obvious prerequisite for inorganic film formation is significantly lower: \(4.0 \text{ eV} - 5.0 \text{ eV} \) per bond, respectively.\[^{29}\] From Figure 3 and Table 1 it can also be seen that inorganic films are produced for the entire studied range of specific energy, while barrier properties have a steep dependency on the specific energy. From the considerations discussed above it can be concluded that high specific energy values are required not merely for scission of the hydrocarbon groups, but mostly for the densification of the deposited layer. While densification of silica-like films via ion bombardment is a known process in low pressure PECVD (i.e.\[^{46}\]), at atmospheric pressure one would expect that incident ions have only near thermal energies. However, a detailed numerical study indicates that in the cathode sheath region of the atmospheric pressure DBD discharge generated in air, the ion energy can reach up to \(20 \text{ eV} \) due to a substantial compression of the electric field.\[^{47}\] In addition one should consider the energy delivered to the surface of the growing film by the ion-electron recombination, quenching of the vibrational and electronically excited states, UV irradiation and interaction with the radicals formed in plasma.

It should be emphasized that, regarding the energy budget required for deposition of dense silica-like film, the discharge mode with a high specific power density \((\approx 20 \text{ W} \cdot \text{cm}^{-2}) \) employed in the present work has clear advantages in terms of throughput and layer quality compared to the low current APTD-like discharge \((0.5 \text{ W} \cdot \text{cm}^{-2}) \).\[^{17}\] Moreover, the mechanisms leading to the formation of energetic ions will be valid for glow-like discharge where significant field compression in the cathode fall region can be expected.\[^{47}\] However, such a mechanism is not applicable to Townsend-like modes, where the electric field is practically unaffected by the volumetric charge.

The dependency of WVTR on film growth process temperature for a fixed value of the dissipated power of \(575 \text{ W} \), DDR of \(10 \text{ nm} \cdot \text{m} \cdot \text{min}^{-1} \) and film thickness of \(100 \text{ nm} \) is shown in Figure 6. The substrate temperature was adjusted by the variation of the circulating oil temperature within the range of \(30 - 100 \text{ °C} \). The actual process temperature was in situ monitored by the infrared camera. Without plasma the measured substrate temperature was equal to the set value of the heater, however the plasma process introduces an additional heat source which induces a considerable temperature rise. For the given dissipated power of \(575 \text{ W} \) the surface temperature increase was typically \(40 - 50 \text{ °C} \) above the temperature of the circulating oil in the electrodes. In Figure 6 one can see that the WVTR dependency on the temperature has a minimum at approximately \(120 - 130 \text{ °C} \). Remarkably this value is rather close to the glass transition temperature \((T_g) \) of the polymeric PEN substrate which is \(\approx 121 \text{ °C} \).\[^{48}\] Moreover, similar WVTR values have been obtained on PET substrates (not shown here), having a considerably lower glass transition temperature of \(\approx 78 \text{ °C} \). It should be noted that not merely the value of the process temperature, but
also the residence time in the plasma is an important factor in the deposition process. For the experimental conditions presented in Figure 6, the residence time of the polymer in plasma was approximately 12 s. Generally, the dependency of WVTR on process temperature of silica-like films displays a similar trend as the OTR behaviour reported.

ATR-FTIR spectra of the films synthesized at different substrate temperatures T_s are presented in Figure 7. The variation in absorption spectra with substrate temperature as shown in Figure 7 is similar to the effect of dynamic deposition rate described above. Both, higher process temperature and lower deposition rate lead to a reduction of silanol groups in the film and a red shift of the peak related to the asymmetric stretch vibration of Si—O—Si. A qualitative interpretation of the Si—OH peak intensity by in situ ATR-FTIR spectra as a function of the deposition rate is shown in Figure 5.
function of deposition rate and temperature was given by Deshmukh and Aydil for low pressure PECVD of silica-like films from TEOS.\[^{[85]}\] In\[^{[85]}\] Si—OH was considered as an intermediate deposition product, while silica network would be formed by surface reactions of the adjacent Si—OH groups and subsequent water release. The removal rate of silanol species would increase with surface temperature. Given the time required for the removal reaction, an increase in deposition rate (i.e. by increase in TEOS flow) can lead to conditions where the Si—OH has no time to react and will be buried in the growing film. Comparing the trends seen in Figure 7a,b with barrier performance in Figure 6 one can note that although the presence of the silanol groups is still reducing for temperatures above 130 °C or deposition rates below 10 nm · m⁻¹ · min⁻¹ the barrier performance does not improve significantly. It can be argued that under these conditions the water permeation is limited by the local defect density (either substrate-related pinholes or environmental dust). One can also note that although the intensities of —OH related infrared absorption peaks are comparable in Figure 4 and Figure 7 for the case of 1) dynamic deposition rate of 60 nm · m⁻¹ · min⁻¹ and substrate temperature of 125 °C and 2) dynamic deposition rate of 20 nm · m⁻¹ · min⁻¹ and substrate temperature of 82 °C, the difference in WVTR between those two cases is almost two orders of magnitude (see Figure 3 and 6). Therefore, solely monitoring the —OH group density in the deposited film cannot give direct quantitative indication of absolute WVTR value.

AFM micrographs of the silica-like films deposited at 82 °C and 140 °C (Figure 5c,d) show a substantial change in morphology with the deposition temperature. Low temperature results in the appearance of multiple blister-like features although the RMS roughness remains relatively low (Rq = 1.7 ± 0.1 nm). At higher temperature the RMS roughness slightly reduces (Rq = 1.4 ± 0.1) as well as the film surface has apparently less features. A qualitatively similar behaviour of the film topology as a function of deposition temperature was observed in\[^{[17]}\] for the silica-like layers deposited in a Townsend discharge.

It is interesting to compare the WVTR data for 100 nm thick film obtained in the present work (i.e. see Figure 3: 1.8 10⁻¹⁸ g · m⁻² · day⁻¹ at 40 °C, 90% RH) with the data presented in the literature for single layer silica like films. The WVTR reported in\[^{[14]}\] for a 100 nm thick film produced by MW plasma assisted process (measured at 25 °C, 85% RH) is \(\approx 2 \times 10^{-18} \text{g} \cdot \text{m}^{-2} \cdot \text{day}^{-1}\). For the alternative low pressure PECVD technique assisted by Penning discharge\[^{[52]}\] the moisture barrier for 200 nm thick silica-like film, roll-to-roll deposited on PEN substrate, was 0.71 g · m⁻² · day⁻¹ (50 °C, 100% RH).
From the examples above one can conclude that AP-PECVD is capable of producing films with similar or better performance compared to low pressure technology. It is necessary to emphasize that except prior publication from our group,[18] to our knowledge, the possibility to deposit good performing moisture barrier films at atmospheric pressure was not reported before.

4. Conclusion

The present work demonstrates the significant potential of the high current atmospheric pressure DBD for deposition of thin inorganic moisture barrier films on polymeric webs in an open air roll-to-roll process. The gas discharge was sustained between cylindrical electrodes in a cost effective gas mixture of N2/Ar/O2/TEOS, these conditions are compatible to industrial roll-to-roll processing. The discharge plasma has a diffuse appearance and results in uniform, smooth and well adherent coatings with good effective moisture barrier performance in the range of 10^{-3} g · m^{-2}·day^{-1} (40 °C, 90% RH). This result is typically better than a single layer silica-like barrier films deposited at low pressure PECVD.[12,14] Both, dynamic deposition rate and polymeric substrate temperature were shown to be important parameters to control moisture barrier properties. Although the films remain inorganic for the whole studied range of deposition rates and process temperatures, a strong and correlated variation in the density of silanol groups and moisture permeation properties was observed. Deposition rate and substrate temperature also have a pronounced effect on the thin film morphology, studied by AFM. In the investigated system reduction in deposition rate and increase in temperature results in smoother films with less surface features, although for the whole studied parametric range roughness of a 100 nm thick film remains comparable to the pristine polymeric substrate (< 2 nm). It was shown that the formation of dense inorganic silica-like barrier layer is characterized by the specific energy of a few keV per monomer molecule dissipated in plasma. The relatively high energy budget may indicate additional densification mechanisms as discussed in literature and has a good synergy with the high specific power density of the APGD-like discharge mode employed for deposition.

Acknowledgements: The presented study was performed in the frame of LIFE12 ENV NL 000718 “Green plasma process technology for manufacturing of flexible electronics” project and industrial partnership program between Dutch Foundation for Fundamental Research on Matter (FOM) and FUJIFILM Europe B.V. The authors are grateful to Patrick Marcus from Bruker Company for AFM analysis of the AP-PECVD samples. The authors are also grateful to dr. Kirsten Schiffermann (Fraunhofer IST) for the XPS measurements. The research of M.C. has been funded by the Netherlands Organization for Scientific Research (NWO, Aspasia program).

Received: October 3, 2014; Revised: November 17, 2014; Accepted: November 18, 2014; DOI: 10.1002/ppap.201400194

Keywords: atmospheric pressure glow discharges (APGD); dielectric barrier discharges; gas diffusion barrier films; roll-to-roll reactors; water-vapour permeability

